Abr 252015
 

Hoy, 25 de abril se conmemora el descubrimiento de la estructura del ADN por Watson y Crick,  basado también en el trabajo de Rosalind Franklin, de la que el día 16 hizo 57 años de su muerte.
Algunas curiosidades:

  • Si multiplicamos la longitud del DNA de una célula por todas las células del ser humano, haríamos 70 viajes de ida/vuelta al sol.
  • ¿Sabías que el ADN te influye a la hora de escoger pareja?
  • El ADN contiene más información en un centímetro cúbico que un millón de millones de Compact Discs
  • Sí “estirásemos” el ADN de cada célula alcanzaríamos una longitud de 2 metros
  • Si estirásemos el ADN de todas las células de nuestro cuerpo, con su longitud ¡podríamos dar más de 1.500 vueltas al planeta!
  • 1 millon de bases(Megabases) de DNA es el equivalente a 1 Megabyte de almacenamiento en un pc
  • El ADN mitocondrial sólo se hereda de la madre.
  • Si nuestro genoma fuese un libro y se leyesen 10 letras por segundo ¡tardaríamos 11 años en leerlo!
  • Sabías que si pusiésemos todo el ADN de un ser humano en línea recta llegaría a Plutón.
  • El helecho indio tiene mas de 1000 pares de cromosomas mientras que el ser humano solo 23
  • ¿Sabías que para escribir todas las letras que forman el genoma humano harían falta más de 214 millones de tuits?
  • ¿Sabías que para escribir todas las letras que forman el genoma humano harían falta más de 214 millones de tuits?
  • Si multiplicamos la longitud del DNA de una célula por todas las células del ser humano, haríamos 70 viajes de ida/vuelta al sol.

¿Qué podemos hacer con los alumnos?

1. Al igual que se hace en el día del libro con El Quijote, se puede leer un capítulo del libro de Genoma, Matt Ridley. Es un libro que tiene 23 capítulos, uno por cada cromosoma y que elige un gen controvertido para discutir sobre lo que es genético o no. Das con ello pie a fomentar la lectura divulgativa, que no es poco, y  a la discusión: hasta donde llega la Ciencia, lo que hoy es verdad, mañana no lo es…

2. Recorta y pega del ADN: hay varios modelos.

http://cienciasnaturalesgtb.wikispaces.com/file/view/adn+1.pdf

http://es.scribd.com/doc/67760648/ADN-RECORTABLE

3. Lectura del texto original del descubrimiento: http://www.bioxeo.com/adn.htm

4. Trabaja con la línea de tiempo sobre la Historia del ADN: tarda bastante en bajar:

http://www.biologia.edu.ar/macromoleculas/macromedia/history.exe

5. Juega con el ADN.

Puedes construir una molécula http://learn.genetics.utah.edu/es/units/basics/builddna/

Traduce y transcribe un gen: http://learn.genetics.utah.edu/es/units/basics/transcribe/posteriormente, un gen.

6. Proyecto Genoma humano: http://www.genome.gov/25019879. Aquí te explican tambiéncómo se secuencia el ganoma: http://www.genome.gov/Edkit/flash/intro.html Tiene un montón de animaciones.

7. Puedes extraer ADN: http://learn.genetics.utah.edu/es/units/activities/extraction/

8. Revisa las animaciones sobre el ADN: http://www.elmundo.es/especiales/2003/02/salud/genetica/descifrar_la_vida.html

1. Lectura de “Hasta ahora se creía que las únicas moléculas capaces de contener y transferir información biológica eran el ADN y el ARN. Un equipo de científicos ha sintetizado en el laboratorio seis polímeros que también cumplen con las leyes de la herencia y, uno de ellos, con la evolución darwiniana.” Sigue leyendo
2. Dibuja, fabrica, fotografía ADN:
3. Visualiza este video: https://www.youtube.com/watch?v=VZ8GZRx5_Vk

ADN animation.gif
«ADN animation» por brian0918Trabajo propio. Disponible bajo la licencia Dominio público vía Wikimedia Commons.

Feb 202015
 

El tema de Genética debes comenzar a estudiarlo después de conocer la Meiosis, que explica la herencia de caracteres: debes tener en cuenta que los caracteres están por duplicado, uno en cada componente de las parejas de cromosomas.

Lee las leyes de Mendel.

1. Empieza con los problemas de 1 carácter. Son muy sencillos.

Resolución de problemas de genética de 1 carácter from Isabel Etayo on Vimeo.

A continuación, lee la 3ª ley de Mendel, que sirve para aprender a realizar los problemas de dos caracteres.

Problemas de 2 caracteres. Fácil from Isabel Etayo on Vimeo.

Estos son los más sencillos, después continúa con:

REsolución de problemas de genética de 2 caracteres. from Isabel Etayo on Vimeo.

Es importantísimo que vayas haciendo los problemas del libro. Problemas de herencia de los grupos sanguíneos:

La herencia de los grupos sanguíneos: problemas from Isabel Etayo on Vimeo.

Problemas de herencia ligada al sexo:

Problemas de genética ligados al sexo. from Isabel Etayo on Vimeo.

Problemas de herencia: http://popplet.com/app/#/537371

Haz los ejercicios del libro y recuerda que están resueltos en el aula virtual. Para repasar: http://www.librosvivos.net/smtc/homeTC.asp?TemaClave=1185 Puedes jugar también con los genes en : http://www.arrakis.es/~ibrabida/biologia.html

Puedes hacer más problemas

http://www.bioygeo.info/GeneticaBG4.htm

http://www.elcora.org/005_esobach/biologia/4eso/problemas_genetica_con_soluciones_2011.pdf

http://juanmaarguelles.files.wordpress.com/2010/11/28_problemas_resueltos1.pdf

Oct 092014
 

Después de ver la célula, nos toca ver sus funciones: nutrición, relación y reproducción. Para aclarar los conceptor de mitosis y meiosis, incluyo unos vídeos caseros explicativos, con algunas preguntas  sobre el tema.s.

La mitosis.

La meiosis.

Ejercicios

  1. ¿Cuántos cromosomas tienen las células somáticas y cuántas las sexuales?
  2. ¿Qué células realizan la mitosis y cuáles la meiosis?
  3. ¿Qué es el sobrecruzamiento que produce la recombinación de genes?
  4. ¿Qué nos aparecería en el ecuador de una célula en

-Metafase de la Mitosis

-Metafase I

-Metafase II?

  1. ¿Cuáles son las diferencias entre mitosis y meiosis?
  2. ¿Cuál es la división reduccional y por qué?
  3. ¿Qué mecanismo utilizará un ser unicelular para reproducirse?

 
Para resolver tus dudas y que puedas repasar estos conceptos, te adjunto las diferencias entre ambos procesos

Oct 162012
 

En la película Parque Jurásico se conseguía recuperar ADN de dinosaurios de hace de 65 millones de años a partir de la sangre chupada a estos animales por mosquitos conservados en ámbar. Con los fragmentos recuperados y cubriendo los huecos con ADN de rana (debería haber sido con ADN de reptiles o de aves, al menos, actuales) los científicos pudieron “fabricar” dinosaurios.Según las últimas investigaciones esto no sería posible, ya que el ADN tiene un promedio de vida de 521 años.
Según un estudio publicado por Matt Kaplan y la revista Nature parece que el ADN de los dinosaurios y los insectos atrapados en ámbar antiguos no se podrían recuperar para hacer un ‘Jurassic Park’
¿Cómo se ha hecho el experimento?
Se han utilizado los huesos de aves extintas en Nueva Zelanda para calcular la vida media de ADN.

Después de la muerte celular, los enzimas empiezan a romper los enlaces entre los nucleótidos que forman el ADN y los microorganismos aceleran la descomposición. Sin embargo, parece que es el agua la responsable de la degradación y la presencia de agua subterránea es casi omnipresente.
Las dificulatades
-Es raro encontrar grandes conjuntos de ADN suficiente para hacer comparaciones significativas.
-Las condiciones ambientales variables como la temperatura, el grado de ataque microbiano y la oxigenación son capaces de alterar la velocidad de descomposición.

Morten Allentoft en la Universidad de Copenhague y Michael Bunce en la Universidad Murdoch en Perth, Australia, examinaron 158 muestras de 3 especies de aves Moa extintas, que contenían ADN. Los huesos, con 600 y 8.000 años de edad, habían sido recuperados de tres sitios con condiciones de conservación casi idénticos y temperatura de 13,1 º C.

Estudio
Al comparar las edades de los especímenes y grados de degradación del ADN, los investigadores calcularon que el ADN tiene una vida media de 521 años. Vida media significa, al igual que en los estudios de radiactividad, que después de 521 años, la mitad de los enlaces entre los nucleótidos en la doble hélice se habrían roto, después de otros 521 años la mitad de los enlaces restantes se han ido, y así sucesivamente.

El equipo predice que incluso en un hueso a una temperatura ideal de conservación -5 º C, de manera efectiva todos los huesos serían destruidos después de un máximo de 6,8 millones de años. El ADN dejaría de ser legible mucho antes – tal vez después de unos 1,5 millones de años, cuando los filamentos restantes fueran demasiado cortos para dar información significativa.

“Podríamos ser capaces de romper el récord de la secuencia de ADN más antiguo auténtico, que actualmente es de alrededor de medio millón años “, dice Simon Ho, biólogo computacional de la Universidad de Sydney en Australia.
¿Por qué?
Porque quedan interrogantes:
-¿Ocurrirá lo mismo en otros ambientes, como permafrost y las cuevas?
-Analizar la química del suelo e incluso la época del año.

Publicado en Nature el 10 de octubre de 2012.
Aprovecho para ligar la fantástica explicación que se daba en Jurasik Park al ADN y los trabajos de clonación, que parece que estos estudios niegan.

Feb 072012
 


No todo el genoma humano ha sido secuenciado. En la última revisión se estima que es de 3,200,000,000 pb = 3.200.000 KB = 3200 Mb = 3,2 GB, más exactamente 3,173,036,847 o sea que nos cabría en un DVD. Pero… no todo está secuenciado. Las diferencias más importantes cubren partes muy repetitivas del genoma, en su mayoría cerca de los centrómeros y en otras regiones heterocromáticas. También hay diferencias en las posiciones de varios grupos de genes (por ejemplo, genes del RNA ribosomal) en las que es imposible determinar el número exacto de copias, aunque estas deficiencias han sido subsanadas.
¿Cuánto ha sido secuenciado?
Se puede decir que sólo el 90% del genoma humano ha sido secuenciado y el 10% restante se divide en 357 espacios repartidos por todo el genoma. (Cada cromosoma tiene huecos no secuenciados, pero algunos tienen más que otros y que no depende del tamaño del cromosoma.)
El número total de pares de bases secuenciadas que se han organizado en los andamios y se colocan en un cromosoma particular es de 2,861,332,606 pb. Se añaden 6,110,758 pb secuenciadas, pero que no sabemos todavía colocar, aunque se asigna a los cromosomas 1,4,9, y 17, pero algunos de ellos no puede incluso estar asociado con un cromosoma particular.
Si suponemos que el tamaño del genoma haploide verdadero es 3,2 Gb, o 3.200 Mb, entonces la parte secuenciado y asignado del genoma representa el 89,6% y la parte sin asignar de lo secuenciado es de 0,2%.
Si quieres conocer el genoma:

Leído en Microsiervos y http://sandwalk.blogspot.com/2012/02/how-much-of-our-genome-is-sequenced.html

Ene 292012
 

El síndrome de Duncan es una enfermedad hereditaria, recesiva y ligada al cromosoma X. Por ello, como los varones tienen un sólo cromosoma X, bastará con que la madre porte la enfermedad (tenga el gen recesivo en uno de los 2 cromosomas X que tiene) para que el hijo tenga el 50% de posibilidades de tenerla. Provoca una respuesta inesperada ante la infección por el virus de Epstein-Barr, generando una proliferación descontrolada de linfocitos y apareciendo linfomas, tumores del sistema linfático. Es muy infrecuente: uno por millón de nacimientos) pero a María Luisa y Andrés les pasó en sus tres primeros hijos. María Luisa portaba el gen y había perdido a dos hermanos por esa causa, aunque lo desconocía.

He marcado el gen de Duncan como d, que aparece únicamente en el cromosoma X. Aquí se ve cómo se habrá realizado la herencia. Después de leer el texto, deberás decir cómo son los hijos.
La única posibilidad era realizar un trasplante de una persona compatible y además, los 2 mayores tenían un factor HLA ( antígenos que determinan la compatibilidad) distinto al del tercero. No se encontraron donantes y solo cabía tener niños donantes por reproducción asistida, que al no ser todavía legal en España (2005) tenía que realizarse en Bruselas. Se necesitaban embriones viables, compatibles con alguno de los hijos y sin el gen recesivo, claro. Tuvieron un hijo compatible con el pequeño. En 2008 volvió a realizar el tratamiento y tuvieron 2 mellizas compatibles. Desgraciadamente el tratamiento no llegó a tiempo de salvar al mayor, pero ahora viven los 5 hermanos, gracias a los avances en genética y al coraje de los padres, claro.

<a

Dic 072011
 

[brightcove vid=1306808339001&exp=1399191810&w=300&h=225]

Desenredando el ADN. Una de las grandes dificultades que tenemos hoy en día, además de conocer exactamente qué quieren decir cada una de las asociaciiones de bases existentes en nuestro genoma, es cómo se apagan o encienden determinados genes en cada célula, haciendo que una misma información funcione de manera distinta y sirviendo por tanto para diferenciarla, no la información, sino la expresión de esos genes.

La técnica de mapeo de Aiden, un estudiante y sus colegas, intenta explicar el paso desde la estructura primaria y secundaria del ADN (la doble hélice del ADN y los pares de bases) y el mayor nivel (la forma en que se agrupa formando los 23 cromosomas del genoma humano). El nivel intermedio, del orden de miles o millones de pares de bases, se ha mantenido oscuro: es necesario saber qué pares de bases han terminado juntos para reconstruir el genoma en 3D

Todas las células de un  mismo ser vivo comparten la misma información genética, con unos 30.000 genes contenido en nuestro genoma. ¿Por qué una célula del hígado se expresa de distinta manera, mantiene distinta forma y se reproduce a distinto ritmo que una del ojo? ¿Podría influir la forma en que se dobló el genoma,  determinando qué genes estaban dentro y fuera?

Hipótesis

La configuración de la información genética dentro de cualquier célula se ha organizado, en esencia, como un periódico. Toda la información está contenida en el interior, pero los titulares de algunos han sido elegidos para la primera página. Así que el genoma de una célula del hígado se han hecho de la información más importante y relevante el más accesible, mientras que una célula de la córnea se puede plegar de forma diferente.

A través de su investigación sobre los últimos años, Aiden y sus colegas han descubierto que en el ámbito de una megabase (1 millón de pares de bases), el genoma humano se ha envuelto en una estructura conocida como un glóbulo fractal, que es  una estructura elegante y organizada, que puede ser desplegada sin enredarse.

“Aunque puede parecer abstracto”, escribió en su ensayo Aiden nueva ciencia “, el glóbulo fractal es fácil de explicar a los estudiantes graduados, ya que se asemeja mucho a un plato de fideos” Sin cocer, a 30 metros de fideos encajan perfectamente en un paquete pequeño y se entrelazan sin que se enreden.